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1. Introduction 

Although the analyses performed by the Advanced Lethality and Protection Analysis Branch 
(ALPAB) of the Weapons and Materials Research Directorate, US Army Research Laboratory, 
are extremely varied and diverse, some scenarios arise with a not unexpected consistency. It is 
not uncommon for ALPAB analyses to require a grid scheme or uniform random point picking 
over a given domain. A few general examples of this are random personnel or vehicle targets 
spread across an area target, evenly distributed sample points structured to allow for unbiased 
spatial data collection, and space-filling vehicle or projectile formations (e.g., potential swarming 
applications). 

Point picking and evenly spaced point distributing over a parallelogram or parallelepiped domain 
are straightforward and intuitive. The most basic example of evenly spaced point distributing 
over a parallelogram or parallelepiped is the set of vertices of a Cartesian grid. Most scientists, 
engineers, and laypersons alike are familiar and comfortable with the concept of using a Cartesian 
grid to evenly partition Euclidean space. However, the process of point picking or distributing over 
other domains is not always as straightforward. More specifically, point picking and especially 
evenly spaced point distributing over circular and spherical domains turns out to be a much more 
difficult problem, and unfortunately, such domains are regularly required or desired.  

Point picking on the disc has most recently and regularly been used by ALPAB analysts to 
calculate the positions of individual personnel and vehicle targets over a circular area battlefield. 
One specific example of such a target was used in the Modular-Munition, Dual-Warhead 
Concept Analysis.1 The battlefield target in this analysis was supposed to loosely represent how 
an assembly or staging consisting of both personnel and vehicle targets might look. This circular 
area target was also used in subsequent analyses such as the Modular Lethality Multi-Target 
Defeat analysis.2 Evenly spaced point distribution has most recently become a tool in the 
Modular Lethality effort as well and has been applied to the positioning of a set of individual 
projectiles that are assumed to be able to work in a specific formation to defeat the given target.3 
Evenly spaced point distribution over a disc or even on or within a sphere will most likely play a 
role in many “swarming” type concept analyses in the future. 

The ALPAB project that finally spurred the collection of point picking and distributing 
algorithms and the writing of this report was Adaptive Protection: the Dynamic Threat Map 
(DTM). The objective of the DTM was to develop a set of algorithms for predicting the potential 
for threat (i.e., future threats) around a vehicle’s current location based off of both historical and 
real time situational data. Part of the algorithm development necessitated the fast computation of 
an arbitrary number of evenly spaced data collection rays emanating from the center of mass of 
the vehicle. This is exactly the problem of even point distribution on the surface of the sphere 
(hemisphere in this particular case). 
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These are just a few examples of the ALPAB projects over the past 2 years that have 
implemented algorithms for picking and distributing points on a disc or sphere. In actuality, the 
author estimates that she is asked about point picking and distributing algorithms at least once 
every other month. It is with this in mind that in this report we present a collection of algorithms 
for picking and distributing points on a disc and sphere. In computer simulation, the need to 
arrange points on a disc or on or within a sphere commonly falls into 2 categories: 1) random 
point picking and 2) evenly spaced point distributing. 

Random point picking, or just point picking, is defined in this report as the process of picking 
random points within the region of interest such that the density of points within arbitrary 
neighborhoods is expected to be uniform over the entire region as the number of points, n, goes 
to infinity. Random point picking is very useful when an unstructured (i.e., random) point 
distribution is desired. However, for small values of n, random point picking does not guarantee 
uniform spatial distribution of points over the region. 

Evenly spaced point distributing is defined in this report as the process of distributing n points 
over the surface of the disc or sphere so as to produce the most evenly spaced distribution of 
points possible. To consistently produce uniform and evenly spaced distributions of points when 
n is small, evenly spaced point distributing techniques often produce structured, grid-like point 
patterns. 

This report does not attempt to document an exhaustive collection of point picking and 
distributing algorithms but instead focuses on the small handful that the author has found to be 
most useful for her purposes. All calculations are presented for a disc or sphere centered at the 
origin. 

2. Point Picking on (and around) the Disc 

2.1 Elimination Method 

If runtime is not an issue, an easy method for point picking on a disc of radius r is the 
elimination method. In the elimination method, the x- and y-coordinates of each point are each 
drawn from a uniform [−𝑟𝑟, 𝑟𝑟] distribution, (i.e., from the smallest square containing the disc). 
Each point is then either accepted or rejected depending on whether or not it lies within the disc 
(Fig. 1). This method is simple to implement, but as the disc only occupies approximately 79% 
of the area within this square domain, approximately 21% of the points picked will be rejected 
(Fig. 1). For this reason, it is often desired to implement a direct method that does not rely on 
picking and eliminating points. 
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Fig. 1   Elimination method for point picking on the disc. Points are generated over the 

smallest square region containing the disc and then are rejected if they do not lie 
within the disc. Only about 79% of points will be accepted with approximately 
21% being rejected. 

 

2.2 Direct Method: The Most Common Mistake 

When point picking over a rectangular domain [𝑎𝑎, 𝑏𝑏] × [𝑐𝑐,𝑑𝑑] ⊂ ℝ2, most people will quickly 
realize that the most straightforward technique is to draw an x-coordinate from a uniform [𝑎𝑎, 𝑏𝑏] 
distribution, and a y-coordinate from a uniform [𝑐𝑐, 𝑑𝑑] distribution. The resulting points will 
exhibit a uniform spatial distribution over the domain (Fig. 2).
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Fig. 2   Point picking on a rectangle; x- and y-coordinates are drawn independently from uniform 
distributions over their respective domains and yield a uniform spatial distribution over 
the rectangle 

The logical extension of this technique to point picking over a circular domain  

 𝑆𝑆1 ∶= {(𝑥𝑥,𝑦𝑦) ∈ ℝ2 | 𝑥𝑥2 + 𝑦𝑦2 ≤ 𝑟𝑟2}  (1) 

is to switch to polar coordinates over the domain [𝜌𝜌,𝜃𝜃] ⊆ [0, 𝑟𝑟] × [0,2𝜋𝜋]. We can then draw 𝜌𝜌 
from a uniform [0, 𝑟𝑟] distribution, and 𝜃𝜃 from a uniform [0,2𝜋𝜋] distribution, and use the standard 
polar to Cartesian transformations  

 𝑥𝑥 = 𝜌𝜌 cos 𝜃𝜃  (2) 

 𝑦𝑦 = 𝜌𝜌 sin𝜃𝜃  (3) 

to get back to the desired Cartesian coordinates. Although the resulting points will have 𝜌𝜌- and 
𝜃𝜃-coordinates that are independently uniformly distributed, it quickly becomes apparently that 
the points themselves are “clumped” near the origin and far from uniformly distributed over the 
disc (Fig. 3). 
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Fig. 3   Point picking on the disc; drawing both 𝜌𝜌- and 𝜃𝜃-
coordinates from independent, uniform distributions 
over their respective domains yields a point distribution 
that is clumped around the center of the disc 

There is a simple explanation for this outcome. First, recall that the area of the sector subtended 
by a central angle, 𝜑𝜑, of a circle of radius r (Fig. 4) is given by the equation 

 𝐴𝐴 = 1
2
𝑟𝑟2 𝜑𝜑.  (4) 

Therefore, the area of a polar rectangle about a point, p, as shown in Fig. 5 can be expressed as 

 𝑑𝑑𝑑𝑑 = 𝐴𝐴2 − 𝐴𝐴1 = 1
2
𝜌𝜌22 𝑑𝑑𝑑𝑑 − 1

2
𝜌𝜌12 𝑑𝑑𝑑𝑑 = 1

2
(𝜌𝜌22 − 𝜌𝜌12) 𝑑𝑑𝑑𝑑. (5) 

This can be expanded to  

 𝑑𝑑𝑑𝑑 = 1
2

(𝜌𝜌2 + 𝜌𝜌1)(𝜌𝜌2 − 𝜌𝜌1) 𝑑𝑑𝑑𝑑 = 1
2

(𝜌𝜌2 + 𝜌𝜌1) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 =  𝜌𝜌 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑, (6) 

where 

 𝜌𝜌 = 1
2

(𝜌𝜌2 + 𝜌𝜌1). (7) 

Equation 6 is commonly referred to as the area element and should be familiar to anyone who 
has evaluated a double integral in polar coordinates.  

So when point picking on the disc, although the density of 𝜌𝜌-coordinates over any change in 𝜌𝜌 
(i.e., over any 𝑑𝑑𝑑𝑑) and the density of 𝜃𝜃-coordinates over any change in 𝜃𝜃 (i.e., over any 𝑑𝑑𝑑𝑑) 
remain the same, the area of the resulting polar rectangle (i.e., the area element) is given by  

 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑.  (8) 
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Fig. 4   Area of a sector of a circle 

 

Fig. 5   Example of a polar rectangle
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This means that for any 2 polar rectangles with equal 𝑑𝑑𝑑𝑑s and 𝑑𝑑𝑑𝑑s, the number of points within 
the polar rectangles will be equal; however, the area, and therefore density of points within each 
polar rectangle will directly depend on the 𝜌𝜌-coordinate of that particular polar rectangle (Fig. 6). 

 
Fig. 6   Two area elements with equal radial lengths (𝑑𝑑𝑑𝑑) and 

angular components (𝑑𝑑𝑑𝑑) but different areas 

2.3 Direct Method: A Simple Transform 

Luckily, there is a rather intuitive solution to the “clumping problem”. We need only to find the 
appropriate coordinate transform to remove the radial coordinate dependence from the area of 
the polar rectangle. To be exact, we are looking for a coordinate transform of the form 

 𝑢𝑢 = 𝑓𝑓(𝜌𝜌),     𝑓𝑓: [0, 𝑟𝑟] → [𝑎𝑎, 𝑏𝑏], 𝑓𝑓 ∈ 𝐶𝐶1 , (9) 

such that 

 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑. (10) 

Then the area element in Eq. 8 would become 

 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝜌𝜌 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑.  (11) 

Integrating Eq. 11 yields the desired transformation 

 𝑢𝑢 =  1
2
𝜌𝜌2,     𝑢𝑢: [0, 𝑟𝑟] → �0, 1

2
𝑟𝑟2�. (12) 

For convenience, we multiply by 2 and adjust the interval to yield 
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 𝑢𝑢 =  𝜌𝜌2,     𝑢𝑢: [0, 𝑟𝑟] → [0, 𝑟𝑟2]. (13) 

Finally, to make use of the transform, we solve for 𝜌𝜌 to yield 

 𝜌𝜌 =  √𝑢𝑢,     𝜌𝜌: [0, 𝑟𝑟2] → [0, 𝑟𝑟]. (14) 

With this coordinate transform, the direct method for point picking over a disc of radius r 
reduces to drawing 𝑢𝑢 from a uniform [0, 𝑟𝑟2] distribution, 𝜃𝜃 from a uniform [0,2𝜋𝜋] distribution, 
and applying the transformations  

 𝑥𝑥 = √𝑢𝑢 cos 𝜃𝜃  (15) 

and 

 𝑦𝑦 = √𝑢𝑢 sin𝜃𝜃.  (16) 

The resulting points no longer exhibit the clumped distribution near the origin (Fig. 7), and it can 
be easily verified that the points are now uniformly distributed across the disc (left to the reader).  

 

Fig. 7   Side by side comparison of the most common mistake and correct method for directly 
picking points on the disc 

2.4 Points on the Circle 

One application, albeit trivial, of the direct point picking method presented in Section 2.3 is 
picking uniformly distributed points along the boundary of the disc, (i.e., around a circle). The 
boundary of the disc is the set of points  

 𝜕𝜕𝑆𝑆1 ∶= {(𝑥𝑥, 𝑦𝑦) ∈ ℝ2 | 𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2},  (17) 

which is equivalent to the set  
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 Ω1 ∶= {𝜃𝜃 ∈ [0,2𝜋𝜋] | 𝑥𝑥 = 𝑟𝑟 cos𝜃𝜃, 𝑦𝑦 = 𝑟𝑟 sin𝜃𝜃}. (18) 

Therefore, the direct method for point picking around a circle of r reduces to drawing 𝜃𝜃 from a 
uniform [0,2𝜋𝜋] distribution and applying the transformations 

 𝑥𝑥 = 𝑟𝑟 cos 𝜃𝜃  (19) 

and 

 𝑦𝑦 = 𝑟𝑟 sin 𝜃𝜃.  (20) 

3. Point Picking in (and on) the Sphere 

3.1 Elimination Method 

If runtime is not an issue, an easy method for point picking within a sphere of radius r is the 
elimination method. In the elimination method, the x-, y-, and z-coordinates of each point are 
each drawn from a uniform [−𝑟𝑟, 𝑟𝑟] distribution, i.e., from the smallest cube containing the 
sphere. Each point is then either accepted or rejected depending on whether or not it lies within 
the sphere (Fig. 8). This method is simple to implement, but as the sphere only occupies 
approximately 53% of the volume within this cube domain, approximately 47% of the points 
picked will be rejected (Fig. 8). For this reason, it is often desired to implement a direct method 
that does not rely on picking and eliminating points. 

 

Fig. 8   Elimination method for point picking within the sphere. Points are generated within 
the smallest cubic region containing the sphere and then are rejected if they do not lie 
within the sphere. Only about 53% of points will be accepted with approximately 47% 
being rejected. For visual clarity, only points in the “back half” of the region are 
shown in the graph on the left. 
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3.2 Direct Method: The Most Common Mistake 

As in the 2-dimensional (2-D) analogue, when point picking over the domain  

 𝑆𝑆2 ∶= {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3 | 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ≤ 𝑟𝑟2}, (21) 

most people will switch to spherical coordinates over the domain [𝜌𝜌,𝜃𝜃,𝜑𝜑] ⊆ [0, 𝑟𝑟] × [0,2𝜋𝜋] × [0,𝜋𝜋], 
attempt to draw each coordinate from a uniform distribution over its respective interval, and transform 
back to Cartesian coordinates using the standard transformations 

 𝑥𝑥 = 𝜌𝜌 cos 𝜃𝜃 sin𝜑𝜑  (22) 

 𝑦𝑦 = 𝜌𝜌 sin 𝜃𝜃  sin𝜑𝜑 (23) 

 𝑧𝑧 = 𝜌𝜌 cos𝜑𝜑.  (24) 

Unfortunately, this once again produces clumped points; this time they appear to be clumped 
along the z-axis and most tightly at the origin (Fig. 9).  

 

 

Fig. 9   Point picking within the sphere; drawing 𝜌𝜌-,𝜃𝜃-, and 𝜑𝜑-coordinates from independent, uniform 
distributions over their respective domains yields a point distribution that is clumped along the 
z-axis and most tightly near the center of the sphere. 

Again, although the density of 𝜌𝜌-coordinates over any change in 𝜌𝜌 (i.e., over any 𝑑𝑑𝑑𝑑), and the 
density of 𝜃𝜃-coordinates over any change in 𝜃𝜃 (i.e., over any 𝑑𝑑𝑑𝑑), and the density of 𝜑𝜑-
coordinates over any change in 𝜑𝜑 (i.e., over any 𝑑𝑑𝑑𝑑) remain the same, the volume of the 
resulting spherical quadrilateral (Fig. 10) is given by  

 𝑑𝑑𝑑𝑑 = 𝜌𝜌2  sin𝜑𝜑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑.  (25) 
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Equation 25 is commonly referred to as the volume element and should be familiar to anyone 
who has evaluated a triple integral in spherical coordinates.  

 
Fig. 10   Example of a spherical quadrilateral 

This means that, for any 2 spherical quadrilaterals with equal 𝑑𝑑𝑑𝑑s, 𝑑𝑑𝑑𝑑s, and 𝑑𝑑𝑑𝑑s, the number of 
points within the spherical quadrilaterals will be the same. However, the volume, and therefore 
density, of points within each spherical quadrilateral will depend on both the 𝜌𝜌- and 𝜑𝜑- 
coordinates of the spherical quadrilateral. 

3.3 Direct Method: A Simple Transform 

Luckily, the solution to the clumping problem in 3-D is similar to that in 2-D. We need only to 
find the appropriate coordinate transforms to remove the 𝜌𝜌- and 𝜑𝜑-coordinate dependences from 
the volume of the spherical quadrilateral. In this case, we are looking for a coordinate transforms 
of the form 

 𝑢𝑢 = 𝑓𝑓(𝜌𝜌),     𝑓𝑓: [0, 𝑟𝑟] → [𝑎𝑎, 𝑏𝑏], 𝑓𝑓 ∈ 𝐶𝐶1  (26) 

 𝑣𝑣 = 𝑔𝑔(𝜑𝜑),     𝑔𝑔: [0,𝜋𝜋] → [𝑐𝑐,𝑑𝑑], 𝑔𝑔 ∈ 𝐶𝐶1  (27) 

such that 

 𝑑𝑑𝑑𝑑 = 𝜌𝜌2 𝑑𝑑𝑑𝑑 (28) 

and 

 𝑑𝑑𝑑𝑑 = sin𝜑𝜑𝑑𝑑𝑑𝑑. (29) 
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Then the volume element in Eq. 25 would become 

 𝑑𝑑𝑑𝑑 = 𝜌𝜌2  sin𝜑𝜑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑.  (30) 

Note the change in order of integration. This is possible as we will now be integrating over a 
constant function with pairwise independent limits of integration. 

Integrating Eqs. 28 and 29 yields the desired transforms 

 𝑢𝑢 =  1
3
𝜌𝜌3,     𝑢𝑢: [0, 𝑟𝑟] → �0, 1

3
𝑟𝑟3� (31) 

and 

 𝑣𝑣 =  − cos𝜑𝜑,     𝑣𝑣: [0,𝜋𝜋] → [−1,1] . (32) 

For convenience, we can drop the constant coefficients and adjust the intervals to yield 

 𝑢𝑢 =  𝜌𝜌3,     𝑢𝑢: [0, 𝑟𝑟] → [0, 𝑟𝑟3] (33) 

and 

 𝑣𝑣 =  cos𝜑𝜑,     𝑣𝑣: [0,𝜋𝜋] → [−1,1]. (34) 

Finally, in order to make use of these transforms, we take the inverse of Eq. 33 to yield 

 𝜌𝜌 =  √𝑢𝑢3 ,     𝜌𝜌: [0, 𝑟𝑟3] → [0, 𝑟𝑟], (35) 

and make the following observation regarding Eq. 34: 

 sin𝜑𝜑 = �1 − cos2 𝜑𝜑 = √1 − 𝑣𝑣2,     𝑣𝑣 ∈ [−1,1]. (36) 

With these coordinate transforms, the direct method for point picking within a sphere reduces to 
drawing 𝑢𝑢 from a uniform [0, 𝑟𝑟3] distribution, 𝑣𝑣 from a uniform [−1, 1] distribution and 𝜃𝜃 from 
a uniform [0,2𝜋𝜋] distribution, and applying the transformations  

 𝑥𝑥 = √𝑢𝑢3  √1− 𝑣𝑣2  cos 𝜃𝜃 ,  (37) 

 𝑦𝑦 = √𝑢𝑢3  √1 − 𝑣𝑣2  sin𝜃𝜃 , (38) 

and 

 𝑧𝑧 = √𝑢𝑢3  𝑣𝑣.  (39) 

The resulting points no longer exhibit the clumped distribution near the origin (Figs. 11 and 12), 
and it can be easily verified that the points are now uniformly distributed in x, y, and z (left to the 
reader).  
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Fig. 11   Point distribution using the correct parameter domains and transformations. Notice the absence 
of the clumping problem. 

 

Fig. 12   Side by side comparison of the most common mistake and correct method for directly picking 
points within the sphere
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3.4 Points on the Surface of the Sphere 

Less trivial than its 2-D counterpart, one extension of the direct point picking method presented 
in Section 3.3 is picking uniformly distributed points on the surface of the sphere (Fig. 13). 
There are 2 common methods for achieving this.  

 

Fig. 13   Point picking on the sphere. Notice that the points appear to cluster around the image boundary 
in both views. This is due to the 2-D visualization of the points on the surface of the 3-D sphere. 

The first is the projection method. In the projection method, the desired n points are first 
generated within the sphere using any method desired. The points are then projected onto the 
surface of the sphere by normalizing their Cartesian coordinates. This method is straightforward, 
intuitive, and simple to implement, but involves calculating the Euclidean norm of each point 
and dividing the x-, y-, and z-coordinates of each point by its respective norm. 

The second method does not require any norm calculations or divisions and instead makes use of 
the equations from Section 3.3. The user need only note that the surface of the sphere is the set of 
points  

 𝜕𝜕𝑆𝑆2 ∶= {(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ ℝ3 | 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑟𝑟2}, (40) 

which is equivalent to the set  

 Ω2 ∶= �(𝜃𝜃,𝜑𝜑) ∈ [0,2𝜋𝜋] × [0,𝜋𝜋] � 
𝑥𝑥 = 𝑟𝑟 sin𝜑𝜑  cos 𝜃𝜃
𝑦𝑦 = 𝑟𝑟 cos𝜑𝜑  cos 𝜃𝜃
𝑧𝑧 = 𝑟𝑟 cos𝜑𝜑           

�. (41) 
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Therefore, the direct method for point picking on the surface of a sphere of r reduces to drawing 
𝑣𝑣 from a uniform [−1, 1] distribution and 𝜃𝜃 from a uniform [0,2𝜋𝜋] distribution and applying the 
transformations 

 𝑥𝑥 = 𝑟𝑟√1 − 𝑣𝑣2  cos𝜃𝜃 ,  (42) 

 𝑦𝑦 = 𝑟𝑟√1 − 𝑣𝑣2  sin𝜃𝜃 , (43) 

and 

 𝑧𝑧 = 𝑟𝑟𝑟𝑟.  (44) 

4. Point Picking on an N-Sphere 

An alternate method for point picking on the surface of the sphere is presented here as a general 
method that extends to higher dimensions. This general method, which we will call Muller’s 
method, is presented without proof, and the reader is directed to the specified references for 
insight and proof for the validity of this method. 

Muller’s method4,5 is a 2-step process for uniformly generating points on the boundary of the N-
sphere, 

 𝑆𝑆𝑁𝑁 ∶= {𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁+1) ∈ ℝ𝑁𝑁+1 � ∑ 𝑥𝑥𝑘𝑘2𝑁𝑁+1
𝑘𝑘=1 = 𝑟𝑟2}. (45) 

Step 1: Generate N independent standard normal random variables, 𝑦𝑦𝑘𝑘, 𝑘𝑘 = 1, … ,𝑁𝑁 + 1. 

Step 2: Construct the point 

 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁+1)  (46) 

where 

 𝑥𝑥𝑘𝑘 = �𝑟𝑟 ‖𝑦𝑦‖� �𝑦𝑦𝑘𝑘,     𝑘𝑘 = 1, … ,𝑁𝑁 + 1  (47) 

and 

 ‖𝑦𝑦‖ = (∑ 𝑦𝑦𝑘𝑘2𝑁𝑁+1
𝑘𝑘=1 )1 2⁄ . (48) 

Figure 14 shows points generated by Muller’s method for 𝑁𝑁 = 2. It can be easily verified that 
these points are uniformly distributed over the surface of the sphere (left to the reader). 
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Fig. 14   Point picking on the sphere using Muller’s Method. Notice that the points appear to cluster 
around the image boundary in both views. This is due to the 2-D visualization of the points on 
the surface of the 3-D sphere. This distribution appears to be equivalent to that generated with 
the direct method presented in Section 3.4. The distributions are truly equivalent, and the proof 
is left to the reader. 

5. Evenly Spaced Points on a Disc 

Algorithms presented in this section for evenly distributing points across a disc are not optimal 
solutions. In fact, the concept of what it means to be an evenly spaced distribution is not going to 
be formally defined. Instead, we offer a “visual definition” in the form of 2 graphs in Fig. 15. 
The points in the graph on the left are not evenly spaced, while those in the graph on the right are 
evenly spaced. 
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Fig. 15   Visual definition of what it means for points to be “evenly spaced”. The points within the circle 
on the left are not evenly spaced. The points within the circle on the right are evenly spaced. 

There are many methods that will produce more evenly spaced points than those presented in this 
report, but those methods often come at a significant computational cost. Many of these methods 
involve treating a set of points as particles confined to the disc, and minimizing the forces 
between the particles. Especially as the number of particles increases, such an optimization 
problem can become computationally impractical. Instead, we look for approximate methods that 
only involve algebraic expressions. 

When attempting to evenly distribute n points across the surface of a disc of radius r using only 
algebraic equations, a common first idea is to employ some form of spiral algorithm. In fact, 
there are entire families of spirals that work very well for this purpose. One of the most useful 
families of spirals are the Archimedean spirals. In polar coordinates, Archimedean spirals all 
have the form 

 𝜌𝜌 = 𝑎𝑎 + 𝑏𝑏𝜃𝜃1/𝑐𝑐,     𝑎𝑎, 𝑏𝑏 ∈ ℝ, 𝑐𝑐 ∈ ℝ\{0}. (49) 

The following sections describe how to use 2 subfamilies of Archimedean spirals, along with the 
help of the spiral of Theodorus, to produce evenly spaced point distributions on a disc of 
radius r. 

5.1 Single Spiral Method: Archimedes and Theodorus 

The idea behind the single spiral method is to construct a sequence of n points along a single 
spiral that starts at the origin, winds out toward the disc’s boundary, and has the following 
properties: 



 

18 

1. The distance between any 2 successive points along the spiral is constant. 

2. The distance between any 2 successive windings of the spiral is constant. 

3. The distance between any 2 successive points along the spiral is as close as possible to the 
distance between any 2 successive windings of the spiral. 

Archimedes’s spiral (Fig. 16) is the name for the case when 𝑐𝑐 = 1 in Eq. 49. Archimedes’s spiral 
exhibits the useful characteristic that the distance between any 2 successive windings along any 
ray emanating from the origin is constant (Fig. 17). In fact, this distance is known exactly, and 
has the equation 

 𝑑𝑑 = 2𝜋𝜋𝜋𝜋. (50) 

 

 

Fig. 16   Archimedes’s spiral is the Archimedean spiral given by 
𝜌𝜌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏, where 𝑎𝑎, 𝑏𝑏 ∈ ℝ
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Fig. 17   A useful characteristic of Archimede’s spiral is that 
the distance between any 2 successive windings is 
constant. Only the positive arm is shown; only one 
arm of the spiral was needed to derive the single 
spiral method, and the positive arm was chosen 
arbitrarily. 

This characteristic satisfies property (2) and makes Archimedes’s spiral an ideal contender for 
constructing our single spiral point distribution. The next step is to pick 𝑎𝑎 and 𝑏𝑏, and either 𝜌𝜌 or 
𝜃𝜃 in such a way that the distance between any 2 successive points along the spiral is constant. 

The spiral of Theodorus is a spiral that was first constructed by the Greek mathematician 
Theodorus of Cyrene in the 5th century BCE.6 The spiral of Theodorus starts with an isosceles 
right triangle and is formed by a sequence of contiguous right triangles such that hypotenuse of 
each triangle become the longer cathetus (i.e., the longer nonhypotenuse side) of each successive 
triangle (Fig. 18). A very useful characteristic of the spiral of Theodorus is that the Euclidean 
distance between any 2 successive vertices of the spiral is constant. 
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Fig. 18   The spiral of Theodorus, also known as the 
square root spiral, Einstein spiral, or 
Pythagorean spiral  

Similar to Archimedes’s spiral, the spiral of Theodorus exhibits the characteristic that the 
distance between any 2 successive windings along any ray emanating from the origin is nearly 
constant (Fig. 19). Although, this does not exactly satisfy property (2), the distance between any 
2 successive winding monotonically approaches the value of 𝜋𝜋 from above very rapidly. 
Furthermore, as 𝑛𝑛 → ∞, the spiral of Theodorus happens to be an extremely close approximation 
to Archimedes’s spiral with the equation 

 𝜌𝜌 = 1
2

(𝜃𝜃 − 1) . (51) 
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Fig. 19   Similar to Archimedes’s spiral, the distance 
between successive windings of the spiral of 
Theodorus is nearly constant 

These 2 spirals together provide all the tools we need to construct a single spiral of n points that 
satisfies our properties (1), (2), and (3).  

Starting with the sequence of hypotenuses from the spiral of Theodorus as the radial coordinates, 
we form the sequence of points 

 �𝑝𝑝𝑘𝑘 = (𝜌𝜌𝑘𝑘,𝜃𝜃𝑘𝑘) = �√𝑘𝑘,𝜃𝜃𝑘𝑘��
𝑘𝑘=1

𝑛𝑛
. (52) 

At this point, the angular components in the sequence are completely unknown. We then break 
the structure of the spiral of Theodorus by adjusting the “winding constant”, the coefficient of 𝜃𝜃 
in Eq. 49, until property (3) is satisfied. In other words, we are going to look for Archimedes’s 
spiral such that the distance between consecutive windings is as close as possible to the distance 
between points with consecutive 𝜌𝜌-values from Eq. 52. More precisely, we are looking for an 
equation of the form  

 𝜃𝜃 = 1
𝑏𝑏
𝜌𝜌,     𝑏𝑏 ∈ ℝ+ (53) 

such that 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑘𝑘, 𝑝𝑝𝑘𝑘+1) = 2𝜋𝜋𝜋𝜋. (54) 

Expanding Eq. 54 in polar coordinates yields 

 �𝜌𝜌𝑘𝑘2 + 𝜌𝜌𝑘𝑘+12 − 2 𝜌𝜌𝑘𝑘 𝜌𝜌𝑘𝑘+1  cos(𝜃𝜃𝑘𝑘+1 − 𝜃𝜃𝑘𝑘) = 2 𝜋𝜋𝜋𝜋. (55) 
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Substituting Eq. 53 into Eq. 55 and simplifying yields 

 𝜌𝜌𝑘𝑘2 + 𝜌𝜌𝑘𝑘+12 − 2 𝜌𝜌𝑘𝑘 𝜌𝜌𝑘𝑘+1  cos �𝜌𝜌𝑘𝑘+1−𝜌𝜌𝑘𝑘
𝑏𝑏

� = 4 𝜋𝜋2𝑏𝑏2.  (56) 

Finally, substituting Eq. 52 into Eq. 56 and simplifying yields the relationship 

 2𝑘𝑘 + 1 − 2 √𝑘𝑘 √𝑘𝑘 + 1 cos �√𝑘𝑘+1−√𝑘𝑘
𝑏𝑏

� = 4 𝜋𝜋2𝑏𝑏2. (57) 

Although it may not be apparent, taking the limit as 𝑘𝑘 → 𝑛𝑛 and 𝑛𝑛 → ∞ of the left hand side of 
the equation reveals the solution (see the Appendix for full limit evaluation) 

 lim
𝑛𝑛→∞

lim
𝑘𝑘→𝑛𝑛

2𝑘𝑘 + 1 − 2 √𝑘𝑘 √𝑘𝑘 + 1 cos �√𝑘𝑘+1−√𝑘𝑘
𝑏𝑏

� = 1
4𝑏𝑏2

. (58) 

Therefore, as 𝑘𝑘 → 𝑛𝑛 and 𝑛𝑛 → ∞, Eq. 57 becomes 

 1
4𝑏𝑏2

= 4 𝜋𝜋2𝑏𝑏2, (59) 

and we are left with the desired turning parameter 

 𝑏𝑏 =  1
2√𝜋𝜋

 . (60) 

Putting Eqs. 52, 53, and 60 together produce the sequence of points 

 �𝑝𝑝𝑘𝑘 = (𝜌𝜌𝑘𝑘,𝜃𝜃𝑘𝑘) = �√𝑘𝑘, 2√𝜋𝜋𝜋𝜋��
𝑘𝑘=1

𝑛𝑛
 , (61) 

which satisfy all 3 desired properties. However, these points cover a disc of radius √𝑛𝑛 instead of 
a disc of the desired radius r. The final step is to introduce a radial scale factor 

 𝜌𝜌𝑘𝑘 = 𝑡𝑡√𝑘𝑘,     𝑡𝑡 ∈ ℝ+  (62) 

and impose the radial constraint 

 𝜌𝜌𝑛𝑛 = 𝑟𝑟. (63) 

Eqs. 62 and 63 uniquely determine a value 𝑡𝑡 = 𝑟𝑟
√𝑛𝑛

, and produce the sequence of 𝜌𝜌-values 

 �𝜌𝜌𝑘𝑘 = 𝑟𝑟�𝑘𝑘
𝑛𝑛
�
𝑘𝑘=1

𝑛𝑛

. (64) 

Since scaling the radial component of a set of points in polar coordinates by a constant value 
scales the pair-wise distances between points by that value, scaling the 𝜌𝜌-values this way not 
only scales the distance between successive windings by a constant value, but it also scales the 
distance between successive points on the spiral by the same amount. So Eqs. 61 and 64 produce 
the desired sequence of points 
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 �𝑝𝑝𝑘𝑘 = (𝜌𝜌𝑘𝑘,𝜃𝜃𝑘𝑘) = �𝑟𝑟�𝑘𝑘
𝑛𝑛

, 2√𝜋𝜋𝜋𝜋��
𝑘𝑘=1

𝑛𝑛

.  (65) 

Figure 20 shows 10,000 evenly spaced points generated by the single spiral method. 

 

Fig. 20   Ten thousand evenly spaced points on a disc 
generated by the single spiral method 

5.2 Single Spiral Method Revisited: Fixing the Center Point 

Although the sequence of points formed from Eq. 65 produce a fairly uniform covering of the 
disc, the reader may notice in practice that this method always leaves a bit of a blank space near 
the center of the of disc. The following equations are provided as “patch” to fill this space. This 
“patch” was developed solely by trial and error, but the method appears to work well in practice 
for any value of n.  

 �𝑝𝑝𝑘𝑘 = (𝜌𝜌𝑘𝑘,𝜃𝜃𝑘𝑘) = �𝑟𝑟� 𝑘𝑘
𝑛𝑛−1

, 2√𝜋𝜋𝜋𝜋��
𝑘𝑘=1

𝑛𝑛−1

 (66) 

 𝑝𝑝0 = (𝜌𝜌0,𝜃𝜃0) = �2
3

 𝜌𝜌1, 1
2
𝜃𝜃1� = �2𝑟𝑟

3
� 1
𝑛𝑛−1

,√𝜋𝜋�. (67) 

Figure 21 shows the patch for 2 values of n. 
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Fig. 21   Single spiral method with “center” point adjusted to better fill the space 

From this point on, any reference to the single spiral method refers to this “patched” single spiral 
method. 

5.3 Vogel’s Method: Fermat 

Quite often, nature does it best. Consider the head of the sunflower (Fig. 22), the seeds of which 
are evenly distributed over the “disc”. Extensive research regarding the pattern formed by the 
seeds in the head of a sunflower exists for the interested reader, but for the purpose of this report, 
we acknowledge the spiral phenomena and focus on an implementation of some work done by 
Helmut Vogel.7 Vogel suggested the use of Fermat’s spiral,8 the case when 𝑐𝑐 = 2 in Eq. 49 
instead of the commonly used logarithmic spiral to model the pattern of the seeds on the head of 
a sunflower (Fig. 23). 
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Fig. 22   Spirals can be found all over the natural world such as in the arrangement of seeds on the head of a 
sunflower 

 

Fig. 23   Both logarithmic and Fermat’s spirals can be used to model the observed spiral of seeds on the 
head of a sunflower
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Vogel’s model then has the form 

 𝜃𝜃𝑘𝑘 = 𝑘𝑘 ∗  𝛿𝛿  (68) 

and 

 𝜌𝜌𝑘𝑘 = 𝑡𝑡√𝑘𝑘, ∈ ℝ+ , (69) 

where 𝛿𝛿 is the golden angle. The golden angle is related to the golden ratio, 𝜑𝜑 = 1+√5
2

, by the 
equation 

 𝛿𝛿 = 2𝜋𝜋 �1 − 1
𝜑𝜑
� = 𝜋𝜋�3 − √5�,  (70) 

where the golden ratio is the limit of the ratios of successive terms in the Fibonacci sequence. 

Again imposing the radial constraint in Eq. 63, we arrive at the final form of what we will call 
Vogel’s method9 

 �𝑝𝑝𝑘𝑘 = (𝜌𝜌𝑘𝑘,𝜃𝜃𝑘𝑘) = �𝑟𝑟�𝑘𝑘
𝑛𝑛

, 𝜋𝜋�3 − √5�(𝑘𝑘 − 1)��

𝑘𝑘=1

𝑛𝑛

. (71) 

Figure 24 shows 10,000 evenly spaced points generated by Vogel’s method. 

 

Fig. 24   Ten thousand evenly spaced points on a disc generated 
by Vogel’s method
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5.4 Spiral Method Comparison 

The question must now be asked: Is one spiral method better than the other? Unfortunately, there 
is no clear answer, especially as we have avoided formally defining what it means to be a “good” 
method for generating evenly spaced points. One possible metric that can be used to compare 
these (and other) methods for generating evenly spaced points is the standard deviation in the 
size of the cells of the Voronoi diagram of the points. A Voronoi diagram is a partitioning of the 
plane into convex polygons with respect to a set of vertices (one vertex per cell) such that any 
point within a given cell is closer to that cell’s vertex than it is to any other vertex. So while the 
average area of any partitioning of 𝑆𝑆1 into n regions will always be 𝜋𝜋 ∗ 𝑟𝑟2/𝑛𝑛, the standard 
deviation of the area of regions can provide insight into how much the sizes of the regions vary.  

Figure 25 shows Voronoi diagrams and standard deviation of cell area for both spiral methods 
for 500 points. Although both methods produce distributions of points that appear to be fairly 
evenly spaced, the standard deviation of the area of Voronoi cells of Vogel’s method is slightly 
more than 28% less than that of the single spiral method. This indicates that Vogel’s method 
produces a more evenly spaced set of points as measured by the stated metric. 

 

Fig. 25   Voronoi diagram comparison of single spiral and Vogel’s method for generating evenly spaced 
points on a disc 



 

28 

6. Evenly Spaced Point Distribution on a Sphere 

The problem of “evenly spacing” n points on the surface of the sphere was first proposed by 
JJ Thomson in 1904.10 In his paper, Thomson was looking to determine equilibrium 
configurations of electrons constrained to the surface of a sphere and subject to Coulomb’s 
inverse-square law. This problem became known as Thomson’s problem. To this day, although 
the solutions to a handful of special cases are known, there is no general solution for n electrons 
to Thomson’s problem. 

In 1942, László Fejes Tóth began studying a similar problem of maximizing the minimum pair-
wise distance between n points on the unit sphere.11 This problem became known as Fejes Tóth’s 
problem. In 1943, Fejes Tóth proved that for any n points, there will always exist 2 points such 
that the distance, d, between them satisfies the inequality 

𝑑𝑑 ≤ �4 − csc2 � 𝜋𝜋 𝑛𝑛
6 (𝑛𝑛−2)�.     (72) 

Furthermore, Fejes Tóth showed that this limit is exact for n = 3, 4, 6, and 12; but like 
Thomson’s problem, Fejes Tóth’s problem has no known general solution. 

So here we have presented 2 approaches to the problem of finding an “even spacing” of n points 
on the surface of the sphere; but as Whyte (1952) points out, Thomson’s problem and Fejes 
Tóth’s problems do not have the same solution for general n. As in 2-D analogue of the previous 
section, we now state that the algorithms presented in this section are not exact, or even optimal, 
solutions for producing evenly spaced distributions of points on the surface of the sphere. This is 
a direct result of both the fact that there is more than one formulation of the problem of “evenly 
spacing” n points on the surface of the sphere (we presented 2 formulations that are known to not 
be equivalent), and that there was still no known general solution to any such formulation at the 
time of this report.  

In fact, only the vertices of the 5 Platonic solids can be said to be truly evenly spaced around the 
surface of a sphere. A Platonic solid is any regular, convex polyhedron with congruent faces of 
regular polygons and the same number of faces meeting at each vertex. Therefore, vertices of the 
Platonic solids are perfectly evenly spaced12 by definition (Fig. 26). However, there are only 5 
such convex polyhedra.13  
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Fig. 26   The 5 Platonic solids, i.e., the only truly evenly spaced point distributions 
over the surface of the sphere 

It is for these reasons that we again forego formally defining the concept of what it means to be 
an evenly spaced distribution. Instead, we offer another “visual definition” in the form of 2 
graphs in Fig. 27. The points in the graph on the left are not evenly spaced, while those in the 
graph on the right are evenly spaced. 
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Fig. 27   Visual definition of what it means for points to be “evenly spaced”. The points on the surface of 
the sphere on the left are not evenly spaced. The points on the surface of the sphere on the right 
are evenly spaced. 

When evenly spacing points over the surface of the sphere, 3 of the most common techniques are 
electrostatic repulsion, geodesic subdivision, and spiral methods. Electrostatic repulsion is 
essentially Thomson’s problem; place n points anywhere on the surface of the sphere, simulate 
the repelling forces between the points, and look for a stable (i.e., converged) configuration.  

With geodesic subdivision, start with an octahedron (8 congruent triangular faces) or 
icosahedron (20 congruent triangular faces), place a point at the midpoint of each edge and 
normalize the coordinates of each new point to “push” it out to the surface of the sphere, and 
keep repeating until the desired number of points is attained. Each geodesic subdivision 
transforms each triangular face into 4 triangular faces, but as it involves a projection to the 
surface of the sphere, it also breaks the congruency of the faces. An interesting application of 
geodesic subdivision is the design of domes, buildings, and structures (e.g., Spaceship Earth14 at 
Epcot, Walt Disney World; the Long Island Green Dome15 in Calverton, NY; the Montréal 
Biosphère16 in the former pavilion of the United States for the 1967 World Fair Expo 67 at Parc 
Jean-Drapeau in Montréal, Québec; and the Climatron17 at the Missouri Botanical Garden in St. 
Louis, MO). Geodesic subdivision only works for configurations of points where  

 𝑛𝑛 = 2 + 4𝑘𝑘,     𝑘𝑘 ∈ ℤ+ (73) 

or  

 𝑛𝑛 = 1
2

(4 + 5 ∗ 22𝑘𝑘),     𝑘𝑘 ∈ ℤ+. (74) 
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Configurations with the number of points given by Eq. 73 are created by starting geodesic 
subdivision with an octahedron. Configurations with the number of points given by Eq. 74 are 
created by starting geodesic subdivision with an icosahedron. 

As in the 2-D analogue, spirals are a natural structure for distributing points over the surface in 
question. Just as electrostatic repulsion, geodesic subdivision, and spiral methods are not the only 
3 methods for distributing points on the surface of the sphere, the following spiral methods are 
neither an exhaustive set nor do they claim to be the “best” methods. Instead, the spiral methods 
presented were chosen for their balance of ease of use and overall performance. 

6.1 Rakhmanov, Saff, and Zhou 

In 1994, Rakhmanov, Saff, and Zhou were concerned with what is commonly referred to as the 
extremal energy for n points on the sphere. To discuss the extremal energy, we first need some 
notation and definitions. From this point on, all calculations are for points on the unit sphere. 
Scaling the points to spheres of different radii is straightforward and left to the reader. 

For 𝑛𝑛 𝜖𝜖 ℤ, 𝑛𝑛 > 2, let 𝜔𝜔𝑛𝑛 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} be a set of n points on the unit sphere  

 Ω𝑆𝑆12 ∶= {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3 | 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1}.  (75) 

Then for each 𝛼𝛼 𝜖𝜖 ℝ, the α–energy associated with 𝜔𝜔𝑛𝑛 is defined by 

 𝐸𝐸(𝛼𝛼,𝜔𝜔𝑛𝑛) ∶= �
∑ log 1

�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�1≤𝑖𝑖<𝑗𝑗≤n , 𝛼𝛼 = 0

∑ �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
𝛼𝛼

1≤𝑖𝑖<𝑗𝑗≤n , 𝛼𝛼 ≠ 0
  , (76) 

and the extremal energy for n points on Ω𝑆𝑆12 is defined by 

 ℰ(𝛼𝛼,𝑛𝑛) ∶= �
inf

𝜔𝜔𝑛𝑛⊂Ω𝑆𝑆12
𝐸𝐸(𝛼𝛼,𝜔𝜔𝑛𝑛) , 𝛼𝛼 ≤ 0

𝑠𝑠𝑠𝑠𝑠𝑠
𝜔𝜔𝑛𝑛⊂Ω𝑆𝑆12

𝐸𝐸(𝛼𝛼,𝜔𝜔𝑛𝑛) , 𝛼𝛼 > 0   . (77) 

The problem of determining the extremal energy can be thought of a generalization of both 
Thomson’s and Feje Tóth’s problems. In this notation, Thomson’s problem seeks to determine 
the extremal energy when 𝛼𝛼 = −1, i.e., seeks to determine ℰ(−1,𝑛𝑛); Feje Tóth’s problem seeks 
to determine the extremal energy when 𝛼𝛼 = 1 [i.e., seeks to determine ℰ(1,𝑛𝑛)]. 

Rakhmanov, Saff, and Zhou were not specifically interested in any one value of α, but were 
looking to provide bounds for the discrete extremal energy for −2 < 𝛼𝛼 < 2. Furthermore, they 
sought a simple explicit formula for distributing n points on the surface of the sphere that would 
closely estimate ℰ(𝛼𝛼,𝑛𝑛). 

The reader is directed to their 1994 paper18 for the details of these bounds, while the equations for 
what Rakhmanov, Saff, and Zhou called generalized spiral points are presented in the following 
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equations. The 𝜃𝜃 and 𝜑𝜑 variables have been switched from that presented in Rakhmanov, Saff, and 
Zhou to conform to spherical coordinate notation used throughout this report. 

For any 𝑛𝑛 𝜖𝜖 ℤ, define the sequence 

 
 ℎ𝑘𝑘 ∶= 1 − 2 (𝑘𝑘−1)

𝑛𝑛−1
, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. (78) 

Then 𝜔𝜔�𝑛𝑛 = {(𝜃𝜃𝑘𝑘,𝜑𝜑𝑘𝑘)}𝑘𝑘=1𝑛𝑛 ⊂ [0, 2𝜋𝜋] × [0,𝜋𝜋] denotes the generalized spiral on Ω𝑆𝑆12 in spherical 
coordinates (𝜌𝜌 = 1), and is defined as 

 𝜃𝜃1 ∶= 𝜃𝜃𝑛𝑛 ∶= 0, (79) 

 𝜃𝜃𝑘𝑘 ∶= �𝜃𝜃𝑘𝑘−1 + 𝐶𝐶
√𝑛𝑛

1

�1−ℎ𝑘𝑘
2
�  𝑚𝑚𝑚𝑚𝑚𝑚 (2𝜋𝜋), 2 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1, (80) 

and 

 𝜑𝜑𝑘𝑘 ∶= cos−1(ℎ𝑘𝑘), (81) 

where 𝐶𝐶 is a constant chosen such that successive points will all be approximately the same 
distance apart on Ω𝑆𝑆12. Rakhmanov, Saff, and Zhou found that 𝐶𝐶 = 3.6 worked well for 𝑛𝑛 ≤ 12,000. 
Rakhmanov, Saff, and Zhou’s (RSZ) spiral with 1,000 points is shown in Fig. 28. 

 

Fig. 28   One thousand points of Rakhmanov, Saff, and Zhou’s spiral on the surface of a sphere 

6.2 Rakhmanov, Saff, and Zhou: 2 Improved Variations 

While an RSZ spiral looks to cover the sphere with fairly evenly spaced points, it can be easily 
seen that the spacing is less than optimal at the 2 poles. However, there is a very simple 
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adjustment that can be made to a standard RSZ spiral to address the points in question. Basically, 
we shift the first and last points, 𝑝𝑝0 and 𝑝𝑝𝑛𝑛−1, away from the poles and recalculate the spacing of 
the intermediate points. For the sake of fast and efficient implementation, the following 
equivalent set of equations for an RSZ spiral is first offered without proof: 

 𝑠𝑠  = 3.6
√𝑛𝑛

, (82) 

 𝑑𝑑𝑑𝑑 = 2
𝑛𝑛−1

, (83) 

 𝑧𝑧𝑘𝑘 = 1 − 𝑘𝑘 ∗ 𝑑𝑑𝑑𝑑, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,  (84) 

 𝑟𝑟𝑘𝑘 = �1 − 𝑧𝑧𝑘𝑘2, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,  (85) 

 𝜃𝜃𝑘𝑘 = 𝑘𝑘 ∗ 𝑠𝑠, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,  (86) 

 𝑥𝑥𝑘𝑘 = 𝑟𝑟𝑘𝑘  cos(𝜃𝜃𝑘𝑘), 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,  (87) 

 𝑦𝑦𝑘𝑘 = 𝑟𝑟𝑘𝑘  sin(𝜃𝜃𝑘𝑘), 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1.  (88) 

Then the RSZ spiral adjustment for addressing the points at the poles can be accomplished by 
choosing a slightly different value of 𝑑𝑑𝑑𝑑 in Eq. 83 while shifting the values of 𝑧𝑧𝑘𝑘 in Eq. 84 as 
follows: 

 𝑑𝑑𝑑𝑑 = 2
𝑛𝑛
   (89) 

and 

 𝑧𝑧𝑘𝑘 = 1 − �𝑘𝑘 + 1
2
� ∗ 𝑑𝑑𝑑𝑑, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1.  (90) 

Eqs. 82 and 85–88 remain the same, and the spiral is appropriately adjusted as can be seen in 
Fig. 29. 
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Fig. 29   One thousand points of adjusted Rakhmanov, Saff, and Zhou’s spiral on the surface of a sphere 

Is the resulting spiral an improvement? That would depend on the definition of what makes one 
distribution of points better (i.e., more evenly spaced) than the other. To compare the distribution 
of these adjusted RSZ spiral points to those of the original RSZ spiral method, we again have to 
first establish a metric. As in the 2-D analogue of evenly spaced points on a disc, we are going to 
calculate Voronoi diagrams, but this time we will be working on the surface of the sphere instead 
of within the plane. Our metric will then be the standard deviation of the surface area of the cells 
(i.e., of the solid angles).  

Figures 30 and 31show Voronoi diagrams and solid angle standard deviation for both the original 
and adjusted RSZ spiral methods for 1,000 points. Although both methods produce distributions 
of points that appear to be fairly evenly spaced, the standard deviation of the solid angle of 
Voronoi cells of the adjusted RSZ spiral method is slightly more than 41% less than that of the 
original RSZ spiral method. This indicates that the adjusted RSZ spiral method produces a more 
evenly spaced set of points as measured by the stated metric. 
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Fig. 30   Voronoi diagram of Rakhmanov, Saff, and Zhou’s spiral on the surface of a sphere 

 

 

Fig. 31   Voronoi diagram of adjusted Rakhmanov, Saff, and Zhou’s spiral on the surface of a sphere 

Finally, taking a lesson from Vogel’s method as stated in Section 5.3, we offer the second 
potential improvement to the RSZ spiral by changing the 𝜃𝜃𝑘𝑘 increment in Eq. 86 from 
Rakhmanov, Saff, and Zhou’s value of 𝐶𝐶/√𝑛𝑛, to the following: 
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 𝜃𝜃𝑘𝑘 = 𝑘𝑘 ∗ 𝛿𝛿,     0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,  (91) 

where 𝛿𝛿 = 𝜋𝜋�3 − √5� is the golden angle as in Vogel’s method. The other equations remain the 
same as those used in the adjusted RSZ spiral (Eqs. 82, 85, 89, and 90) and the spiral is re-spaced 
as shown in Fig. 32. 

 

Fig. 32   One thousand points of adjusted Rakhmanov, Saff, and Zhou’s spiral with the golden angle on 
the surface of a sphere 

Figures 31 and 33 show Voronoi diagrams and solid angle standard deviation for both the 
adjusted RSZ spiral method and adjusted RSZ spiral method with golden angle for 1,000 points. 
Although both methods produce distributions of points that appear to be fairly evenly spaced, the 
standard deviation of the solid angle of Voronoi cells of the adjusted RSZ spiral method with 
golden angle is slightly more than 27% less than that of the adjusted RSZ spiral method. This 
indicates that the adjusted RSZ spiral method with golden angle produces a more evenly spaced 
set of points as measured by the stated metric.
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Fig. 33   Voronoi diagram of Rakhmanov, Saff, and Zhou’s spiral with the golden angle on the surface 
of a sphere 

6.3 Bauer 

The final method to be presented is that of Bauer.19 In 2000, Bauer presented a straightforward, 
nonrecursive spherical spiral for testing algorithms for stellar attitude determination analyses. 
Like Rakhmanov, Saff, and Zhou’s spiral, Bauer’s is an analytic spiral that is simple to 
implement. Bauer’s spiral has the form 

 𝐿𝐿 = √𝑛𝑛 𝜋𝜋,  (92) 

 𝑧𝑧𝑘𝑘 = 1 − 2𝑘𝑘−1
𝑛𝑛

,                 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, (93) 

 𝜑𝜑𝑘𝑘 = cos−1(𝑧𝑧𝑘𝑘),              1 ≤ 𝑘𝑘 ≤ 𝑛𝑛,  (94) 

 𝜃𝜃𝑘𝑘 = 𝐿𝐿 𝜑𝜑𝑘𝑘,                        1 ≤ 𝑘𝑘 ≤ 𝑛𝑛,  (95) 

 𝑥𝑥𝑘𝑘 = sin(𝜑𝜑𝑘𝑘) cos(𝜃𝜃𝑘𝑘),    1 ≤ 𝑘𝑘 ≤ 𝑛𝑛,  (96) 

 𝑦𝑦𝑘𝑘 = sin(𝜑𝜑𝑘𝑘) sin(𝜃𝜃𝑘𝑘),    1 ≤ 𝑘𝑘 ≤ 𝑛𝑛.  (97) 

Bauer’s spiral with 1,000 points is shown in Fig. 34. Figure 35 shows the Voronoi diagram and 
solid angle standard deviation for the same set of points. Here we can see that the standard 
deviation of the solid angle of Voronoi cells of Bauer’s spiral method is extremely close to 
(about 1% higher than) that of the adjusted RSZ spiral method with golden angle. This indicates 
that Bauer’s method and the adjusted RSZ spiral method with golden angle produce equivalently 
evenly spaced point distributions as measured by the stated metric. 
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Fig. 34   One thousand points of Bauer’s spiral on the surface of a sphere 

 

Fig. 35   Voronoi diagram of Bauer’s spiral on the surface of a sphere 
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7. Conclusions 

The algorithms presented in this report offer only a small glimpse into the complex and unsolved 
problem of point picking and distributing. They are the algorithms that have proved most useful 
for myself in a large variety of applications. Many of the algorithms are well known (e.g., any of 
the point picking algorithms) but not always well documented. In such cases, it was my aim not 
only to document, but also to offer some explanation or proof for why the algorithm is correct 
and why it works. 

All but one of the point distributing algorithms presented are formally attributed to the person or 
people who discovered/derived them. While I do not claim to be the first person to derive what I 
have called the spiral method, I was not able to find such a method and/or equations via an 
extensive literature search which included both the internet and many scientific and 
mathematical journals and textbooks. I would be very interested to know whether or not such 
equations have been published elsewhere and welcome any such information and/or comments. 
Furthermore, I highly suggest that the interested reader read through the sources referenced in 
this report. 
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Appendix. Limit Evaluation from Section 5.1 

                                                 
  This appendix appears in its original form, without editorial change. 



 

44 

Claim: lim
𝑛𝑛→∞

lim
𝑘𝑘→𝑛𝑛

2𝑘𝑘 + 1 − 2√𝑘𝑘 √𝑘𝑘 + 1 cos �√𝑘𝑘+1−√𝑘𝑘
𝑏𝑏

� = 1
4𝑏𝑏2

. 

Proof: Let 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 + 1 − 2√𝑥𝑥 √𝑥𝑥 + 1 cos �√𝑥𝑥+1−√𝑥𝑥
𝑏𝑏

�. Then 

lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥) = lim
𝑥𝑥→∞

1 + 2𝑥𝑥 − 2�𝑥𝑥(𝑥𝑥 + 1) cos �√𝑥𝑥+1−√𝑥𝑥
𝑏𝑏

�  

= lim
𝑥𝑥→∞

1 + 2𝑥𝑥 − 2�𝑥𝑥(𝑥𝑥 + 1) cos��√𝑥𝑥+1−√𝑥𝑥
𝑏𝑏

� � √𝑥𝑥+1+√𝑥𝑥
√𝑥𝑥+1+√𝑥𝑥

��  

= lim
𝑥𝑥→∞

1 + 2𝑥𝑥 −  2�𝑥𝑥(𝑥𝑥 + 1) cos �1
𝑏𝑏
� 1+𝑥𝑥−𝑥𝑥
√𝑥𝑥+1+√𝑥𝑥

��  

= lim
𝑥𝑥→∞

1 + 2𝑥𝑥 − 2�𝑥𝑥(𝑥𝑥 + 1) cos �1
𝑏𝑏
� 1
√𝑥𝑥+1+√𝑥𝑥

�� . 

 

Let 𝑧𝑧 = 1
𝑥𝑥
. Then  

lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥) = lim
𝑧𝑧→0

𝑓𝑓 �1
𝑧𝑧
�  

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2�1

𝑧𝑧
�1
𝑧𝑧

+ 1�  cos�1
𝑏𝑏
� 1

�1
𝑧𝑧+1+�

1
𝑧𝑧

��  

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2�1

𝑧𝑧
�1
𝑧𝑧

+ 1�  cos�1
𝑏𝑏
� 1

�1+𝑧𝑧
𝑧𝑧 +�1𝑧𝑧

��  

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2�1

𝑧𝑧
�1
𝑧𝑧

+ 1�  cos�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

��. 

 

Let 𝑔𝑔(𝑧𝑧) = �1
𝑧𝑧
�1
𝑧𝑧

+ 1�, and calculate the Laurent series about 𝑧𝑧 = 0. 

𝑔𝑔(𝑧𝑧) = �1
𝑧𝑧
�1
𝑧𝑧

+ 1� = ∑ 𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛∞
𝑛𝑛=−∞   

where 

𝑎𝑎𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∮

𝑔𝑔(𝑧𝑧)
𝑧𝑧𝑛𝑛+1

𝑑𝑑𝑑𝑑𝛾𝛾 , 

and the path of integration, γ, is counterclockwise around any closed, rectifiable path containing 
no self-intersections, and enclosing, but not containing, the point 𝑧𝑧 = 0. 
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Note that 

𝑎𝑎𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∮

𝑔𝑔(𝑧𝑧)
𝑧𝑧𝑛𝑛+1

𝑑𝑑𝑑𝑑𝛾𝛾 = 1
2𝜋𝜋𝜋𝜋 ∮

 �1𝑧𝑧�
1
𝑧𝑧+1�

𝑧𝑧𝑛𝑛+1
𝑑𝑑𝑑𝑑𝛾𝛾 = 1

2𝜋𝜋𝜋𝜋 ∮  � 1
𝑧𝑧2

(1 + 𝑧𝑧)𝑑𝑑𝑑𝑑𝛾𝛾   

= 1
2𝜋𝜋𝜋𝜋 ∮

1
𝑧𝑧𝑛𝑛+2 √1 + 𝑧𝑧 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∮ 𝐴𝐴(𝑧𝑧)𝑑𝑑𝑑𝑑𝛾𝛾𝛾𝛾   

where 𝐴𝐴(𝑧𝑧) = 1
𝑧𝑧𝑛𝑛+2 √1 + 𝑧𝑧, and that 𝐴𝐴(𝑧𝑧) is analytic everywhere for 𝑛𝑛 ≤ −2. 

Therefore, by the Cauchy integral theorem* 

𝑎𝑎𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∮ 𝐴𝐴(𝑧𝑧)𝑑𝑑𝑑𝑑𝛾𝛾 = 0 for 𝑛𝑛 ≤ −2. 

So we need only to consider 𝑛𝑛 = −1, 0, 1, 2, … 

𝑛𝑛 = −1: 

𝑎𝑎−1 = 1
2𝜋𝜋𝜋𝜋 ∮

1
𝑧𝑧 √1 + 𝑧𝑧𝑑𝑑𝑑𝑑𝛾𝛾   

𝑧𝑧 = 0 is a pole of order 1, therefore 

𝑎𝑎−1 = 1
2𝜋𝜋𝜋𝜋 ∮

1
𝑧𝑧 √1 + 𝑧𝑧𝑑𝑑𝑑𝑑𝛾𝛾 = 𝑅𝑅𝑅𝑅𝑅𝑅0 �

1
𝑧𝑧 √1 + 𝑧𝑧� = lim

𝑧𝑧→0
�𝑧𝑧 �1

𝑧𝑧 √1 + 𝑧𝑧�� = 1. 

𝑛𝑛 = 0: 

𝑎𝑎0 = 1
2𝜋𝜋𝜋𝜋 ∮

1
𝑧𝑧2 √1 + 𝑧𝑧𝑑𝑑𝑑𝑑𝛾𝛾   

𝑧𝑧 = 0 is a pole of order 2, therefore 

𝑎𝑎0 = 1
2𝜋𝜋𝜋𝜋 ∮

1
𝑧𝑧2 √1 + 𝑧𝑧𝑑𝑑𝑑𝑑𝛾𝛾 = 𝑅𝑅𝑅𝑅𝑅𝑅0 �

1
𝑧𝑧2 √1 + 𝑧𝑧� = lim

𝑧𝑧→0

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑧𝑧2 � 1

𝑧𝑧2 √1 + 𝑧𝑧��  

= lim
𝑧𝑧→0

1
2

(1 + 𝑧𝑧)−1 2� = 1
2
. 

𝑛𝑛 = 1: 

𝑎𝑎1 = 1
2𝜋𝜋𝜋𝜋 ∮

1
𝑧𝑧3 √1 + 𝑧𝑧𝑑𝑑𝑑𝑑𝛾𝛾   

𝑧𝑧 = 0 is a pole of order 3, therefore 

𝑎𝑎1 = 1
2𝜋𝜋𝜋𝜋 ∮

1
𝑧𝑧3 √1 + 𝑧𝑧𝑑𝑑𝑑𝑑𝛾𝛾 = 𝑅𝑅𝑅𝑅𝑅𝑅0 �

1
𝑧𝑧3 √1 + 𝑧𝑧�  

= 1
2

lim
𝑧𝑧→0

𝑑𝑑2

𝑑𝑑𝑑𝑑2
�𝑧𝑧3 � 1

𝑧𝑧3 √1 + 𝑧𝑧�� = 1
2

lim
𝑧𝑧→0

− 1
4

(1 + 𝑧𝑧)−3 2� = −1
8
. 

                                                 
* Also know as the Cauchy-Goursat theorem: Let 𝐷𝐷 ⊆ ℂ, D open and simply connected, let 𝑓𝑓:𝐷𝐷 → ℂ be a holomorphic 

(analytic) function, and let γ be a rectifiable path in D whos start point is equal to its end point. Then ∮ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝛾𝛾 = 0. 
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Therefore 

𝑔𝑔(𝑧𝑧) = �1
𝑧𝑧
�1
𝑧𝑧

+ 1� = ∑ 𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛∞
𝑛𝑛=−∞ = 1

𝑧𝑧
+ 1

2
− 𝑧𝑧

8
+ 𝑂𝑂(𝑧𝑧2). 

 

Now let ℎ(𝑧𝑧) = cos�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

��, and since ℎ(𝑧𝑧) is differentiable at 𝑧𝑧 = 0, the Maclaurin series 

of ℎ(𝑧𝑧) is given by 

ℎ(𝑧𝑧) = ℎ(0) + ℎ′(0)𝑧𝑧 + 𝑂𝑂(𝑧𝑧2). 

Therefore, 

ℎ′(𝑧𝑧) = � √𝑧𝑧

2𝑏𝑏√𝑧𝑧+1�1+√𝑧𝑧+1�
2 −

1
2𝑏𝑏√𝑧𝑧�1+√𝑧𝑧+1�

� sin�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

��. 

So let ℎ′(𝑧𝑧) = ℎ1(𝑧𝑧) − ℎ2(𝑧𝑧) where 

ℎ1(𝑧𝑧) = � √𝑧𝑧

2𝑏𝑏√𝑧𝑧+1�1+√𝑧𝑧+1�
2� sin�1

𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

��  

and      ℎ2(𝑧𝑧) = � 1
2𝑏𝑏√𝑧𝑧�1+√𝑧𝑧+1�

� sin�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

��. 

ℎ2(𝑧𝑧) is not defined at 𝑧𝑧 = 0, but taking the limit as 𝑧𝑧 → 0 yields 

lim
𝑧𝑧→0

ℎ2(𝑧𝑧) = lim
𝑧𝑧→0

� 1
2𝑏𝑏√𝑧𝑧�1+√𝑧𝑧+1�

� sin�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

��  

= lim
𝑧𝑧→0

sin�1𝑏𝑏�
√𝑧𝑧

1+√𝑧𝑧+1
��

2𝑏𝑏√𝑧𝑧�1+√𝑧𝑧+1�
  

=
lim
𝑧𝑧→0

sin�1𝑏𝑏�
√𝑧𝑧

1+√𝑧𝑧+1
��

lim
𝑧𝑧→0

2𝑏𝑏√𝑧𝑧�1+√𝑧𝑧+1�
= 0

0
, 

and applying L’Hospital’s rule yields 

lim
𝑧𝑧→0

ℎ2(𝑧𝑧) = lim
𝑧𝑧→0

𝑑𝑑
𝑑𝑑𝑑𝑑�sin�

1
𝑏𝑏�

√𝑧𝑧
1+√𝑧𝑧+1

���

𝑑𝑑
𝑑𝑑𝑑𝑑�2𝑏𝑏√𝑧𝑧�1+√𝑧𝑧+1��

  

= lim
𝑧𝑧→0

cos�1𝑏𝑏�
√𝑧𝑧

1+√𝑧𝑧+1
��

𝑏𝑏�1+√𝑧𝑧+1��1+2𝑧𝑧+√𝑧𝑧+1�
= 1

8𝑏𝑏2
. 

So the singularity of ℎ2(𝑧𝑧) at 𝑧𝑧 = 0 can be removed, and ℎ2(𝑧𝑧) becomes 



 

47 

ℎ2(𝑧𝑧) = �

1
8𝑏𝑏2

, 𝑧𝑧 = 0

� 1
2𝑏𝑏√𝑧𝑧�1+√𝑧𝑧+1�

� sin�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

�� , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
. 

Therefore 

ℎ′(𝑧𝑧) =  ℎ1(𝑧𝑧) − ℎ2(𝑧𝑧) 

⟹ ℎ′(0) = ℎ1(0) − ℎ2(0) = 0 − 1
8𝑏𝑏2

  

⟹ ℎ(𝑧𝑧) = cos�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

�� = ℎ(0) + ℎ′(0)𝑧𝑧 + 𝑂𝑂(𝑧𝑧2) = 1 − 𝑧𝑧
8𝑏𝑏2

+ 𝑂𝑂(𝑧𝑧2). 

 

Finally, 𝑔𝑔(𝑧𝑧) = �1
𝑧𝑧
�1
𝑧𝑧

+ 1� = 1
𝑧𝑧

+ 1
2
− 𝑧𝑧

8
+ 𝑂𝑂(𝑧𝑧2) 

and       ℎ(𝑧𝑧) = cos�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

�� = 1 − 𝑧𝑧
8𝑏𝑏2

+ 𝑂𝑂(𝑧𝑧2) 

imply that lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥) = lim
𝑧𝑧→0

𝑓𝑓 �1
𝑧𝑧
� 

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2�1

𝑧𝑧
�1
𝑧𝑧

+ 1�  cos�1
𝑏𝑏
� √𝑧𝑧
1+√𝑧𝑧+1

��  

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2 𝑔𝑔(𝑧𝑧) ℎ(𝑧𝑧)  

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2 �1

𝑧𝑧
+ 1

2
− 𝑧𝑧

8
+ 𝑂𝑂(𝑧𝑧2)� �1 − 𝑧𝑧

8𝑏𝑏2
+ 𝑂𝑂(𝑧𝑧2)�  

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2 �1

𝑧𝑧
+ 1

2
− 1

8𝑏𝑏2
+ 𝑂𝑂(𝑧𝑧)�  

= lim
𝑧𝑧→0

1 + 2
𝑧𝑧
− 2

𝑧𝑧
− 1 + 1

4𝑏𝑏2
+ 𝑂𝑂(𝑧𝑧) = 1

4𝑏𝑏2
. 

■  
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